top of page

My Research Blog

Search

Sun-light-driven photocatalytic activity by ZnO/Ag heteronanostructures

  • Writer: Syam Kandula
    Syam Kandula
  • Mar 27, 2018
  • 1 min read

Create a blog post subtitle that summarizes your post in a few short, punchy sentences and entices your audience to continue reading.


ZnO/Ag heteronanostructures with varying amounts of silver nanoparticles on ZnO nanorods were successfully synthesized via a novel and economical thermal decomposition approach. ZnO nanorods were first synthesized by a homogeneous precipitation method and silver nanoparticles were subsequently deposited on the surface of ZnO nanorods by the thermal decomposition of silver acetate in diphenyl ether at 220 °C. The amount of silver nanoparticles on the ZnO nanorods was controlled by varying the concentration of silver acetate during the thermal decomposition. The synthesized ZnO/Ag heteronanostructures were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDXA), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. XRD results confirm the presence of silver nanoparticles (size = 24–31 nm) in the ZnO/Ag heteronanostructures. SEM and TEM images prove the presence of silver nanoparticles on the surface of ZnO nanorods. XPS results indicate the presence of metallic silver in ZnO/Ag. DRS results show characteristic surface plasmon resonance absorption due to silver nanoparticles and PL results indicate an effective separation of photogenerated electron–hole pairs in the ZnO/Ag heteronanostructures as compared to pristine ZnO nanorods. The synthesized ZnO/Ag heteronanostructures were explored as a catalyst towards the photodegradation of methylene blue in an aqueous solution and photostability of the ZnO/Ag heteronanostructures has also been demonstrated.

 
 
 

Comments


emblem_logo.png

Korea Institute of Science and Technology

© 2023 by Scientist Personal. Proudly created with Wix.com

  • LinkedIn Clean Grey
bottom of page